
Задача 1. Пиратский турнир

Пираты хотят провести соревнование по метанию ножей. Для этого используются квадратные щиты размером $N \times N$. У мишени должны быть квадратные кольца, цвета которых чередуются: белый центр, затем чёрное кольцо, следом белое кольцо и т.д. Каждое кольцо имеет ширину в 1 клетку. На рисунке ниже изображена центральная часть щита.

Одна мишень упала за борт, и вся чёрная краска смылась.

Чтобы купить необходимое количество чёрной краски для восстановления мишени, нужно посчитать количество клеток 1×1 , которые потребуется закрасить. К сожалению, у всех пиратов плохо с арифметикой. Помогите им и определите, сколько клеток всего нужно закрасить, чтобы восстановить мишень.

При N = 11: (инлайн-поле ввода)

При N = 19: (инлайн-поле ввода)

За правильный ответ на первый вопрос вы получите 40 баллов. За правильный ответ на второй вопрос вы получите 60 баллов.

Задача 2. Перепутанные цифры

Маша сказала Пете день и месяц своего рождения, чтобы он мог её поздравить. Но, как назло, у Пети все цифры перепутались в голове, и он забыл точную дату, зато запомнил все цифры, содержащиеся в этой дате.

Помогите Пете: определите все варианты даты, которые можно получить из набора цифр 1024. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости. Сначала укажите день, потом месяц. Если значение дня или месяца меньше 10, необходимо в начале указывать 0. В каждой дате должны присутствовать все цифры из набора: 1, 0, 2, 4.

Например, из набора цифр 2, 0, 2, 4 правильным ответом являются такие даты:

22 04

24 02

A, например, пары чисел 42 02 и 04 22 не задают корректные даты, потому что не существует 42-го дня и 22-го месяца.

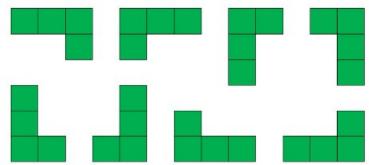
В этой задаче было несколько вариантов, отличающихся входными данными.

Вариант 2.

Набор цифр 1, 0, 2, 5

Вариант 3.

Набор цифр 1, 0, 2, 6


Вариант 4.

Набор цифр 1, 0, 2, 7

Задача 3. Морской бой

Морской бой — это игра, в которой надо находить корабли противника, спрятанные на некотором поле. Корабли бывают разной формы, но в нашей задаче будут использоваться только « Γ »-образные фигуры, состоящие из 4-х клеток. При этом корабли могут быть повёрнуты в любую сторону.

Ниже изображены все возможные повороты корабля:

Один из таких кораблей расположен на поле 7×7 . Вы можете сделать выстрел одновременно по нескольким клеткам поля. Ваша задача выстрелить так, чтобы точно попасть в какую-нибудь клетку корабля.

Например, если бы поле имело размер 3×3 , то можно было бы выстрелить по выделенным ниже клеткам:

Но этот выстрел неправильный, потому что корабль мог располагаться на поле так, как показано ниже, и тогда бы в него не попал ни один из наших выстрелов.

Ниже приведён пример ещё одного выстрела по полю 3×3

Этот выстрел правильный. В этом случае мы точно попадём в корабль, как бы он ни был расположен. Но такого же результата можно добиться и с помощью выстрела по 3 клеткам:

Отметьте на поле 7×7 клетки для выстрела так, чтобы точно попасть в корабль. При этом чем меньше клеток у вас будет отмечено, тем больше баллов вы получите. Но если после выстрела по отмеченным вами полям спрятанный корабль может остаться целым, то вы получите 0 баллов.

Задача 4. Последовательность

Постройте последовательность чисел, в которой каждое следующее число получается из предыдущего с помощью одной их трёх операций:

- Прибавить к числу 3.
- Прибавить к числу 5.
- Переставить цифры числа в каком-то порядке (нельзя, чтобы новое число начиналось с 0). Например, из числа 508 можно сделать 580, 805 и 850.

Например, можно построить такую последовательность: 15, 18, 81, 86.

С числом 15 проделали первую операцию, получилось 18. Затем произвели третью операцию, получилось 81. Выполним с числом 81 вторую операцию и получим 86. Таким образом, получилась последовательность, которая начинается с числа 15, а заканчивается на число 86.

Ответьте на вопросы. Чем короче будут ваши последовательности, тем больше баллов вы получите. За каждую последовательность можно получить по 50 баллов.

- 1) Запишите последовательность чисел, которая начинается с числа 10, а заканчивается на число 17. Каждое следующее число необходимо получить из предыдущего с помощью одной из приведённых в условии операций. Числа записывайте через пробел.
- 2) Запишите последовательность чисел, которая начинается с числа 10, а заканчивается на число 150. Каждое следующее число необходимо получить из предыдущего с помощью одной из приведённых в условии операций. Числа записывайте через пробел.

Школьный этап всероссийской олимпиады по информатике для 7–8 классов, третья группа регионов, 2024

Образовательный центр «Сириус», 24 октября 2024

Задача 5. Полосатая раскраска

Ограничение по времени: 1 секунда

Маша взяла чистый лист бумаги размером $N \times M$, разбитый на клетки со сторонами 1×1 , и покрасила A строк и B столбцов в один из своих любимых цветов.

Определите, сколько на листе осталось незакрашенных клеток.

Формат входных данных

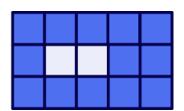
В отдельных строках вводится по одному числу $N,\ M,\ A,\ B\ (1\leqslant N,M\leqslant 100;\ 0\leqslant A\leqslant N;\ 0\leqslant B\leqslant M)$ (именно в таком порядке).

Формат выходных данных

В единственной строке выведите количество незакрашенных клеток.

Система оценки

Решения, правильно работающие при B = 0, получат 30 баллов.


Пример

стандартный вывод

Замечание

На рисунках изображены два из возможных вариантов покраски.

Как можно видеть, на листе остаются 2 незакрашенные клетки. Можно показать, что количество незакрашенных клеток не зависит от того, какие именно строки и столбцы выбрала Маша.

Задача 6. Перчатки

Ограничение по времени: 0.5 секунд

Учитель принёс в класс две коробки, в одной из которых лежат только левые перчатки, а в другой — только правые. Перчатки могут быть либо белыми, либо чёрными. Каждый ученик, не глядя, взял по одной перчатке из каждой коробки и надел их на руки.

Когда все ученики надели перчатки, оказалось, что у A ребят на обеих руках надеты белые перчатки, у B ребят на правой руке надета белая перчатка, а на левой — чёрная, у C ребят, напротив, на правой руке надета чёрная перчатка, а на левой — белая, и, наконец, у D ребят на обеих руках чёрные перчатки.

Теперь учитель попросил учеников взяться за руки и выстроиться в как можно более длинную цепочку, при этом

- каждый ученик должен стоять лицом к учителю;
- ученики могут взяться за руки только если цвет перчаток на их руках совпадает.

Определите длину максимально возможной цепочки, которую могут образовать ученики.

Формат входных данных

В четырёх строках вводятся четыре числа A, B, C, D ($0 \le A, B, C, D \le 10^8$), описанные в условии задачи.

Формат выходных данных

Выведите одно целое число — длину самой длинной цепочки, в которую могут выстроиться школьники, соблюдая условия задания учителя.

Система оценки

В этой задаче 20 тестов, каждый из которых проверяется и оценивается независимо в 5 баллов.

Примеры

стандартный ввод	стандартный вывод
1	4
1	
1	
1	
0	3
3	
1	
0	
V	

Замечание

В первом примере можно выстроить в цепочку всех четверых детей:

Во втором примере можно соединить только троих:

Школьный этап всероссийской олимпиады по информатике для 7–8 классов, третья группа регионов, 2024

Образовательный центр «Сириус», 24 октября 2024

Задача 7. Странная планета

Ограничение по времени: 1 секунда

Космонавт высадился на планете, очень похожей на Землю, чтобы провести важный эксперимент. Он знает, что дата начала эксперимента — $D_1 \ M_1 \ Y_1$ (день, месяц, год), а дата окончания — $D_2 \ M_2 \ Y_2$. Однако выяснилось, что календарь этой планеты отличается от земного — в году N месяцев, i-й месяц года имеет длительность L_i дней.

Помогите космонавту рассчитать, сколько дней продлится эксперимент на этой планете, учитывая, что в его продолжительность входят дни начала и окончания.

Формат входных данных

Первая строка содержит целое число $D_1 \ (1\leqslant D_1\leqslant 10^5)$ — день начала эксперимента.

Вторая строка содержит целое число M_1 $(1\leqslant M_1\leqslant 10^5)$ — месяц начала эксперимента.

Третья строка содержит целое число Y_1 $(1 \leqslant Y_1 \leqslant 10^5)$ — год начала эксперимента.

Четвёртая строка содержит целое число D_2 $(1\leqslant D_2\leqslant 10^5)$ — день окончания эксперимента.

Пятая строка содержит целое число M_2 ($1 \le M_2 \le 10^5$) — месяц окончания эксперимента.

Шестая строка содержит целое число Y_2 $(1 \leqslant Y_2 \leqslant 10^5)$ — год окончания эксперимента.

Седьмая строка содержит целое число N $(1\leqslant N\leqslant 10^5)$ — число месяцев в году на странной планете.

Следующие N строк содержат N целых чисел L_i ($1 \leqslant L_i \leqslant 10^5$) по одному числу в строке — длительности месяцев на странной планете.

Гарантируется, что дата окончания эксперимента не раньше даты начала и что обе даты корректны.

Формат выходных данных

Выведите одно целое число — продолжительность эксперимента, выраженную в днях.

Обратите внимание, что ответ может превышать возможное значение 32-битной целочисленной переменной, поэтому необходимо использовать 64-битные целочисленные типы данных (тип int64 в языке Pascal, тип long long в C++, тип long в Java и C#).

Система оценки

Решения, правильно работающие при $M_1 = M_2, Y_1 = Y_2$, будут оцениваться в 15 баллов.

Решения, правильно работающие при $Y_1 = Y_2$, будут оцениваться в 40 баллов.

Примеры

стандартный ввод	стандартный вывод
40	6
4	
2024	
45	
4	
2024	
7	
12	
3	
60	
72	
40	
22	
5	
40	114
4	
2024	
2	
2	
2025	
7	
12	
3	
60	
72	
40	
22	
5	

Замечание

В первом примере дата начала эксперимента – 40.4.2024 (день.месяц.год), дата окончания – 45.4.2024. Легко видеть, что эксперимент начинается и заканчивается в одном месяце одного года и длится с 40 по 45 день включительно, то есть 6 дней.

Во втором примере дата начала эксперимента — 40.4.2024, дата окончания — 2.2.2025. Всего в году 7 месяцев. Продолжительность месяца с номером 4 равна 72 дням. В эксперимент войдут последние 33 дня четвёртого месяца 2024 года, полностью войдут пятый, шестой и седьмой месяцы 2024, первый месяц 2025 и два дня второго месяца 2025 года.